

Pulsar-IIa Design Review

14 November 2012

Jamieson Olsen, Yasu Okumura, Ted Liu

Outline

- Brief introduction to ATCA
- Pulsar IIa Prototype Board
 - Block diagram
 - ATCA management microcontroller
 - FPGA programming and slow controls
 - Power distribution
 - Controlled impedance and PCB stackup
- On to the schematics and PCB...

Prototype Goals

- Confirm ATCA board compliance
 - Board mechanics
 - Power
 - IPMI management / microcontroller
 - RTM Interface
- Test the Mezzanine Card Interface
- Test our firmware designs on Kintex FPGAs
 - GTX transceivers and LVDS serial I/O
 - DDR3 memory interface
- Verify that our PCB layout is clean
- Our Prototype board is very close to the target design but uses smaller FPGAs and fewer GTX transceivers

Advanced TCA

- Standards developed by Telecom for high availability
- 14 slot backplane
- 48VDC Power, hot swap
- Rear Transition Modules
- Platform management bus based on I2C
- Redundant shelf manager boards

Fabric Interface

- Full mesh
- 1 channel = 4 full duplex ports
- Up to 10Gbps per port
- 100 ohm differential pairs
- Protocol Agnostic
- 8B/10B serial transmission

Base Interface

- Dual Star
- Slots 1 and 2 are hubs
- 10/100/1000BASE-T Ethernet
- We plan to use 100BASE-T for slow controls, board status, firmware downloading, etc.
- Commercial blades include
 Ethernet switch + optional CPU

Mezzanine Cards

- VITA57 FMC Specification
- 74 x 149mm (PMC size)
- High (400) and Low (160) pin count connector:
 - 2 output clocks (LVDS)
 - 58 user defined signals (LVDS)
 - I2C management and JTAG
 - +12V and +3.3V Power
 - No GTX/MGT serial I/O
- 72Gbps max bandwidth
- Xilinx / Digilent dev boards

Microcontroller Detail

Power Distribution

FPGA power estimate = 11W (Worst Case)

— Power Supply———		
Source	Voltage	Total (A)
V _{CCINT}	1.000	2.475
V _{CCBRAM}	1.000	0.046
V _{CCAUX}	1.800	0.778
V _{CCAUX_IO}	2.000	
V _{CCO} 3.3V	3.300	0.003
V _{CCO} 2.5V	2.500	1.269
V _{CCO} 1.8V	1.800	0.076
V _{CCO} 1.5V	1.500	0.155
V _{CCO} 1.35V	1.350	
V _{CCO} 1.2V	1.200	
MGTV _{CCAUX}	1.800	0.041
MGTAV _{cc}	1.000	2.736
MGTAV _{TT}	1.200	1.347
-		

FPGA Banks RAM **MEZZANINE** CARD **MEZZANINE** CARD RAM **MEZZANINE** N **CARD MEZZANINE CARD**

Backplane Clocks

- 6 clocks are bussed used to all slots
- CLK3A and CLK3B are userdefined
- Each FPGA has the ability to drive CLK3A and CLK3B
- M-LVDS drivers
- Frequency < 100MHz
- Good for beam crossing,
 L1 accept, resets, etc.

14 Layer PCB

Controlled Impedance

- GTX up to 10Gbps, LVDS up to 1.25Gbps
- 100 ohms differential on inner layers
- Top and Bottom are 50 ohms (but not as critical)
- Differential pairs are edge coupled striplines
- FR4 -> Rogers RO4350 material
- Using Prototron's recommendation:

DDR3 Memory

- Single chip DDR3 256MB 16-bit
- Longest trace is ~20mm
- No termination resistors on Addr/control group
- 50 ohm traces
- Component is rated for 533MHz but we plan to run at 400MHz
 - 1.6GB/sec max
 - 1GB/sec sequential access (WP383)
- Signal length matching meets Xilinx guidelines (UG586)
- Pinout verified in latest Coregen

RTM Block Diagram

- ARM Cortex M3 is an MMC on the IPMB-L bus
- All SFP and QSFP modules have an I2C interface for control and status
 - Optical signal level,
 temperature,
 voltages, serial
 numbers, etc.